
CORRELATION OF PURE COMPONENT VAPOR PRESSURES VIA A MODIFIED VAN DER WAALS EQUATION

Charles R. Koppany, PhD, Chem. Eng. May 19, 2016

CORRELATION OF PURE COMPONENT VAPOR PRESSURES VIA A MODIFIED VAN DER WAALS EQUATION

In a four part series of papers Koppany (3) modified the original van der Waals equation by making it a three parameter dependent (T_c, P_c, ω) equation of state where ω is the well known Pitzer acentric factor. This work was done in order to make the VDW equation better predict pure component vapor pressures and mixture vapor-liquid equilibria.

In this second paper of a two part series we show detailed graphical comparisons between reduced vapor pressures ($P_R^{\ Sat}$ vs T_R) generated from the modified van der Waals equation and actual experimental data for a series of selected hydrocarbons and non hydrocarbon gases covering a range of acentric factors up to nearly 0.50. The modified VDW predictions are also graphically compared against the $P_R^{\ Sat}$ versus T_R

curves independently generated from the three-parameter Lee-Kesler (2) correlation for the same components considered above.

Table of Contents

I. Introduction 1 Previous Paper 1	
This Study2	
II. Working Forms of the Modified VDW EOS and Fugacity Coefficient	
Van der Waals Eqn.	
Fugacity Coefficient.	
III. Algorithm/Program for Computing Vapor Pressure	
Z-Roots for EOS	
Component Fugacities	
Computational Algorithm	
BASIC Computer Program	
IV. Comparison of Predicted and Experimental Vapor Pressures	
Modified VDW EOS	
Modified VDW vs Lee-Kesler	
Concluding Remarks	
V. References	
List of Figures, and Tables	
Figure 1 - Comparison of Reduced Vapor Pressure Curves Predicted from the Modified VDW Equation Against Actual Data	,
Figure 2 - Comparison of Reduced Vapor Pressure Curves Predicted from the Modified VDW	
Equation Against Actual Data (cont.)	
Figure 3 - Comparison of Predicted Reduced Vapor Pressures from the Lee-Kesler and Modified VDW Correlations	
Figure 4 - Comparison of Predicted Reduced Vapor Pressures from the Lee-Kesler and Modified VDW Correlations (cont.)	
Figure 5 - Analysis and Comparison of Vapor Pressure Data of Propyne Based on the Lee-Kesler and Modified VDW Correlations	
Table 1 - Listing of BASIC Program VDWVP.BAS12	
Table 2 - Output for BASIC Program VDWVP.BAS15	,
Table 2 - Output for BASIC Program VDWVP.BAS (Cont.)	,

CORRELATION OF PURE COMPONENT VAPOR PRESSURES VIA A MODIFIED VAN DER WAALS EQUATION

I. Introduction

<u>Previous Paper</u> In the previous paper (1) we developed "generalized" vapor pressure curves in reduced coordinate format (P_R^{Sat} as a function of T_R) using two classical cubic equations of state, namely the van der Waals and Redlich-Kwong equations, both converted to the reduced format i.e. $P_R = f(V_R, T_R)$. In turn, we compared the above predicted curves with the three-parameter corresponding states correlation (P_R^{Sat} as a function of T_R and ω) of Lee and Kesler (2). All of the above correlations were in turn compared against actual experimental vapor pressure data.

The three-parameter (T_c, P_c, ω) corresponding states correlation of Lee and Kesler provides an excellent representation of the vapor pressure of pure fluids displaying quite a range of acentric factors ω (extent of molecular complexity) and molecular polarity.

The two equations of state are simply two-parameter PVT correlations (T_c , P_c) and can only predict a single "generalized" reduced vapor pressure versus T_R curve because they are only capable of predicting a single value for the "effective" acentric factor as listed below:

<u>EOS</u>	<u> Weffective</u>
VDW	- 0.302
RK	0.062

The Redlich-Kwong (RK) equation provides an adequate representation of reduced vapor pressures if the molecular structure of the fluid of interest is close to being spherical i.e. for $0.0 \le \omega \le 0.10$. The van der Waals equation produces absurd results for the prediction of P_R^{Sat} . It predicts values that are excessively high and also an "effective" acentric factor that is negative.

In a four part series of papers Koppany (3) modified the original VDW equation in a similar fashion as did G. Soave (4) for the original RK equation to better predict pure component vapor pressures and mixture VLE. The proposed modification consisted of making the energy of interaction term (a) a general function of temperature as follows:

$$P = \frac{RT}{V - h} - \frac{a(T)}{V^2} \quad ; \quad a(T) = \alpha(T) a_c \tag{1a,b}$$

Here V is the volume occupied by one mole of fluid.

where
$$a_c = \frac{27 R^2 T_c^2}{64 P_c}$$
 ; $b = \frac{RT_c}{8 P_c}$ (2a,b)

The alpha (α) function was in turn correlated against the reduced temperature T_R and the component acentric factor ω using pure component vapor pressures with the result being:

$$\alpha^{0.5} = 1 + m \left(1 - T_R^{0.5} \right) \tag{3}$$

with
$$m = 0.551088 + 1.452291\omega$$
 (4)

In essence, this modification transformed the original VDW equation into a three-parameter equation of state i.e. it now becomes dependent not only upon T_c and P_c but on ω as well.

At this point we thought that it would be conceivable that this modified VDW equation could also be transformed to a three-parameter reduced coordinate format and then used with the equilibrium criterion:

$$\phi^L = \phi^V \tag{5}$$

to predict reduced vapor pressures P_R^{Sat} as a function of T_R with ω as parameter similar in scope to the Lee-Kesler correlation. However we found the mathematical analysis for this effort to be impossible. The fundamental problem here is that the equation of state constants \underline{a} and \underline{b} become absorbed with the reduced variables P_R , T_R and V_R , thus not permitting us to relate or incorporate the effect of the acentric factor itself.

This Study Because of our inability to work with a reduced form of the modified VDW equation, we simply proceeded to use Equations 1-4 directly in conjunction with the equilibrium criterion, Equation 5, to predict vapor pressures and the subsequent reduced vapor pressures for a series of selected pure components covering a rather broad range of acentric factors up to nearly 0.5. The modified VDW predictions were then graphically compared against the actual vapor pressure data and also against the curves generated from the three-parameter Lee-Kesler correlation for these same components.

II. Working Forms of the Modified VDW EOS and Fugacity Coefficient

<u>Van der Waals Eqn.</u> For programming purposes it is convenient to work with the compressibility factor form of the van der Waals equation. This is accomplished by substituting the following identities into Equation 1:

$$a = \frac{AR^2T^2}{P}$$
 ; $b = \frac{BRT}{P}$; $V = \frac{ZRT}{P}$ (6a,b,c)

The final result after substitution and rearrangement becomes,

$$Z^{3} - (B+1)Z^{2} + AZ - AB = 0$$
 (7)

In Equation 6a the term \underline{a} is given by Equation 1b where the dimensionless, temperature dependent parameter α becomes unity at $T = T_c$.

Fugacity Coefficient For a single pure component phase (L or V), the general volume explicit form of the fugacity coefficient equation can be written as,

$$Ln\left(\frac{f}{P}\right) = Ln\phi = (Z-1) - LnZ + \int_{0}^{1/V} (Z-1)V d\left(\frac{1}{V}\right) \quad (8)$$

If we substitute Equation 1a and the identities given by Equations 6 a,b,c into Equation 8, then after rearrangement and simplification, we arrive at,

$$Ln\left(\frac{f}{P}\right) = Z - 1 - Ln(Z - B) - \frac{A}{Z} \tag{9}$$

or its equivalent form,

$$Ln\left(\frac{f}{P}\right) = Ln\left(\frac{1}{Z-B}\right) + \frac{B}{Z-B} - 2\frac{A}{Z} \tag{10}$$

III. Algorithm/Program for Computing Vapor Pressure

Z-Roots for EOS The compressibility factor form of the VDW equation can be expressed as a cubic polynomial in Z as shown by Equation 7. It can be solved rather conveniently for the desired root(s) by employing the rather robust Newton-Raphson numerical method. This procedure consists of an iterative (predictor/corrector) routine using Equation 11 below,

$$Z^{new} = Z^{old} - \frac{f(Z^{old})}{f'(Z^{old})}$$
(11)

where f(Z) is given by Equation 7 and therefore,

$$f'(Z) = \frac{df(Z)}{dZ} = 3Z^2 - 2(B+1)Z + A \tag{12}$$

A subroutine (inner program loop) included in the program for computing vapor pressures will calculate two roots for Z, one for the saturated liquid and one for the saturated vapor. These roots consist of the lowest and highest ones respectively. Equation 11 generally requires a sound initial estimate for Z. For the liquid an initial trial value of $Z^L = 0.001$ and for the vapor an initial value of $Z^V = 1.00$ generally suffice.

Component Fugacities Once Z^L and Z^V are determined from the EOS based on a trial value of the vapor pressure for a specified temperature T, it is then necessary to see if Equation 5 is satisfied in the outer program loop. The value of P^{Sat} is adjusted if necessary until Equation 5 is satisfied within some specified error tolerance.

Equation 5 can be expressed in logarithmic form such that,

$$Ln\left(\frac{\phi^{V}}{\phi^{L}}\right) = 0$$
 or $Ln\phi^{V} - Ln\phi^{L} = 0$

Now we can apply the Newton-Raphson procedure in the program's outer loop to converge on the correct value of P^{Sat}.

$$F(P) = Ln f^{V} - Ln f^{L} = 0$$
 at solution

$$dF(P) = dLnf^{V} - dLnf^{L}$$

Based on the fundamental definition of the fugacity, we can readily write,

$$dF = \frac{V^{V}}{RT}dP - \frac{V^{L}}{RT}dP \quad or \quad \frac{dF}{dP} = \frac{V^{V} - V^{L}}{RT}$$

The latter differentiation presumes that small variations in pressure have an insignificant effect on the vapor and liquid molar volumes. Therefore the Newton-Raphson iteration formula for the outer program loop iteration sequence can be expressed as follows:

$$P^{Sat(new)} = P^{Sat(old)} - \frac{F}{dF / dP^{Sat}}$$

$$or \qquad P^{Sat(new)} = P^{Sat(old)} - \frac{Ln\left(\frac{f^{V}}{f^{L}}\right)}{\frac{V^{V} - V^{L}}{RT}}$$
(13)

<u>Computational Algorithm</u> The complete step-by-step algorithm for computing vapor pressures is summarized below:

- 1. For a specified $T < T_c$, estimate P^{Sat} .
- 2. Solve the compressibility factor form of the modified VDW Eqn. 7 for Z^L and Z^V using the Newton-Raphson numerical procedure (inner loop).
- 3. Then for the outer loop, calculate the liquid and vapor molar volumes:

$$V^{L} = \frac{Z^{L} RT}{P} \quad ; \quad V^{V} = \frac{Z^{V} RT}{P}$$

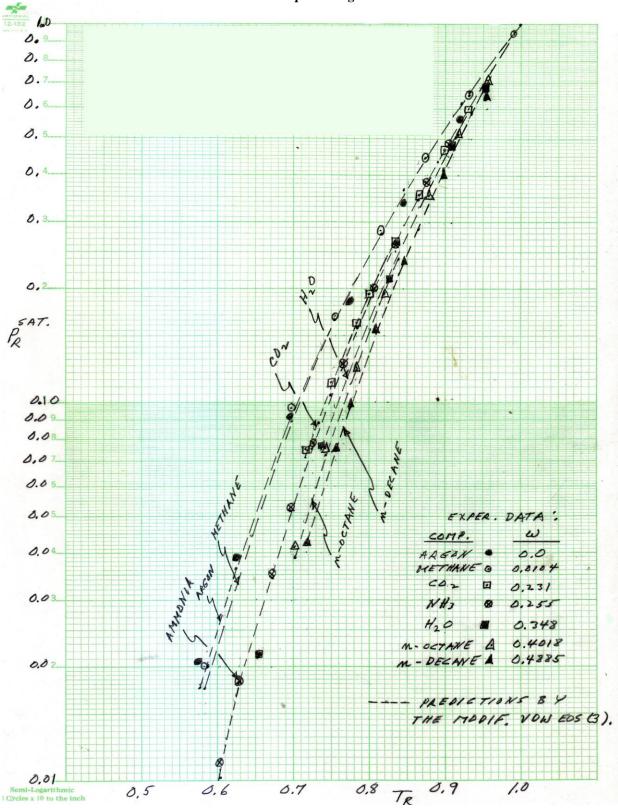
- 4. Calculate Ln ϕ^L , Ln ϕ^V and $F = Ln \phi^V$ Ln ϕ^L using Equation 10.
- 5. Calculate

$$\frac{dF}{dP} = \frac{V^V - V^L}{RT} = F'(P)$$

6. Calculate

$$P^{Sat(new)} = P^{Sat(old)} - \frac{F(P^{Sat(old)})}{F'(P^{Sat(old)})}$$

- 7. Calculate the tolerance \in = abs ($P^{Sat(new)} P^{Sat(old)}$).
- 8. If the value of \in does not meet the required tolerance window, then replace the old value of the vapor pressure with the new one i.e. $P^{Sat(old)} = P^{Sat(new)}$.
- 9. Then return to Step 2 above.
- 10. If the tolerance window is met, then the outer loop is exited and the values of T, P^{Sat} , V^{V} and V^{L} (both in cuft/lb) are printed out.


Step 2 comprises the inner loop (subroutine) for the program. The balance of the steps outlined above represent the outer loop where the desired (converged) value of the vapor pressure is calculated.

BASIC Computer Program Table 1 is a listing of the BASIC program entitled VDWP.BAS which performs the above computational algorithm using the modified VDW equation developed in Reference 3. Table 2 provides the output specifically for ethyl benzene over the temperature range 280 to 630 deg. F. In Line 30 of the program, the system temperature (deg. F) and an estimate of the vapor pressure (psia) are inputted. The required component equation of state parameters are calculated in Lines 45-70. The inner loop or subroutine (Line 760) is called upon at this point in order to calculate the liquid and vapor phase compressibility factors from Equation 7 of the text. Values of the liquid and vapor phase molar volumes calculated from these Z factors are subsequently fed to the outer loop (Lines 85-155) where the value of the vapor pressure is iterated upon using the fugacity coefficient expression given by Equation 10 applied to both phases. The inner loop is repeated as many times as necessary to obtain convergence. Upon convergence of the outer loop, the results are finally printed out in Line 160.

IV. Comparison of Predicted and Experimental Vapor Pressures

Modified VDW EOS Figures 1 and 2 show detailed graphical comparisons between reduced vapor pressure curves (P_R^{Sat} vs T_R) generated from the modified van der Waals equation and actual experimental data shown as individual plotted points. Figure 1 covers three paraffin hydrocarbons and four non hydrocarbons including the polar fluids NH_3 and H_2O . Figure 2 provides a similar comparison covering H_2S , butene-1, propyne and ethyl benzene. The majority of the data employed here were read from the vapor pressure charts published in the Data Book of the American Petroleum Institute (5). For water the data were extracted from the steam tables of Keenan and Keyes (6). And for CO_2 , the tabulated data of Din (7) were utilized. Beside each component listed on these charts are given their respective acentric factors.

Figure 1 - Comparison of Reduced Vapor Pressure Curves Predicted from the Modified VDW Equation Against Actual Data

0.8 0.7_ 0.6 0.5 0.4. 0.3 PR. 0.10 0.09 0,08 0.07 0.0 6. 0,05 EXPER. DATA: 0.04 0.1906 0.03 0.258 0,3169 0.10 0.02 O PREDICTIONS BY VON ESS (3)

0.6

0.5

0.7

1.0

0.01

Semi-Logarithmic Cycles x 10 to the inch

Figure 2 - Comparison of Reduced Vapor Pressure Curves Predicted from the Modified VDW Equation Against Actual Data (cont.)

In general the modified VDW curves provide an excellent match with the plotted data points. The only exception here would be for the component propyne in the lower temperature region. For instance, at T_R values around 0.70 and lower, the predicted curve lies about 16 to 20 percent lower than the plotted data.

<u>Modified VDW vs Lee-Kesler</u> Figure 3 shows a graphical comparison between the predicted reduced vapor pressure curves from the modified VDW equation (dashed) and the three-parameter CS Lee-Kesler correlation (solid lines) specifically for argon, ammonia and n-decane. Figure 4 provides a similar graphical comparison for H₂S, butene-1 and ethyl benzene. The Lee-Kesler correlation (2) was described in detail in our previous study (1). In either plot the curves from the two independent correlations are basically indistinguishable.

In <u>Figure 5</u> we compare the two independent correlation curves for <u>propyne</u> against plotted experimental data points. The separate curves show excellent agreement. However, below $T_R = 0.75$, the data points lie significantly higher than the predicted curves. This result is consistent with the comparison shown in <u>Figure 2</u> for propyne. It suggests that the measured VP data for propyne may be biased or exhibiting some degree of experimental error. Propyne is classified as a compound belonging to the acetylenic group. These materials can decompose explosively when temperature and partial pressure exceed certain limits. As a result, the measurement of any physical property such as vapor pressure must be conducted with extreme caution.

Concluding Remarks Both the three-parameter (P_c, T_c, ω) correlations of Lee-Kesler and the modified VDW equation provide an excellent representation of the vapor pressure of pure fluids displaying quite a range of acentric factors (extent of molecular complexity) and molecular polarity.

Any further effort to work with the modified VDW equation in <u>direct reduced parameter form</u> was dropped at this time. Any success in finally overcoming the obstacles of such an analysis would only amount to a purely academic triumph.

0.8 1.7 0.3. 0.10 0.09 0.08 0.07 0.06. 0.05 0.04 W 0.03 ARGON 0.0 AMMONIA m 610 0.02 LEE - KESLER CORPEL, (2) MONF. YOW EOS, (3) 0.01 1.0 0.7 0.5 0.6 Semi-Logarithmic Cycles x 10 to the inch

Figure 3 - Comparison of Predicted Reduced Vapor Pressures from the Lee-Kesler and Modified VDW Correlations

Figure 4 - Comparison of Predicted Reduced Vapor Pressures from the Lee-Kesler and Modified VDW Correlations (cont.)

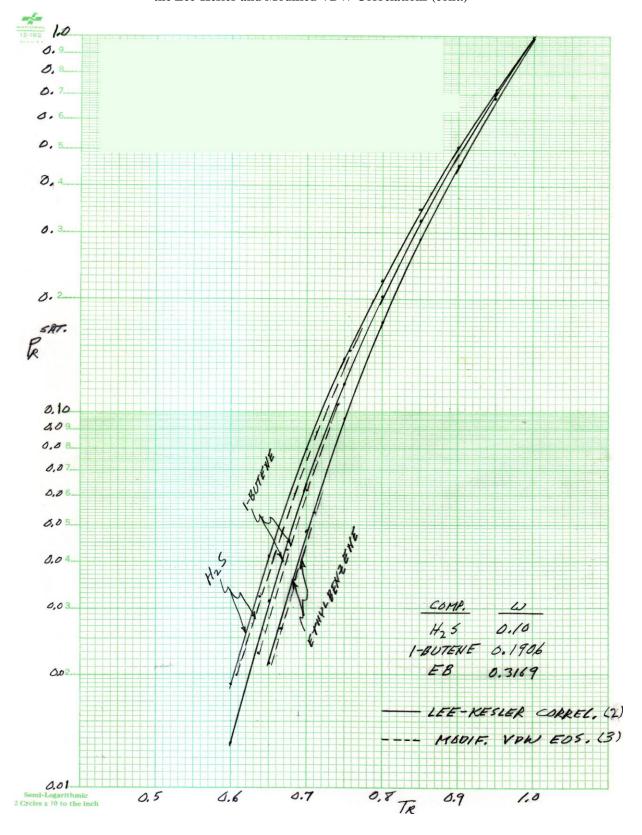
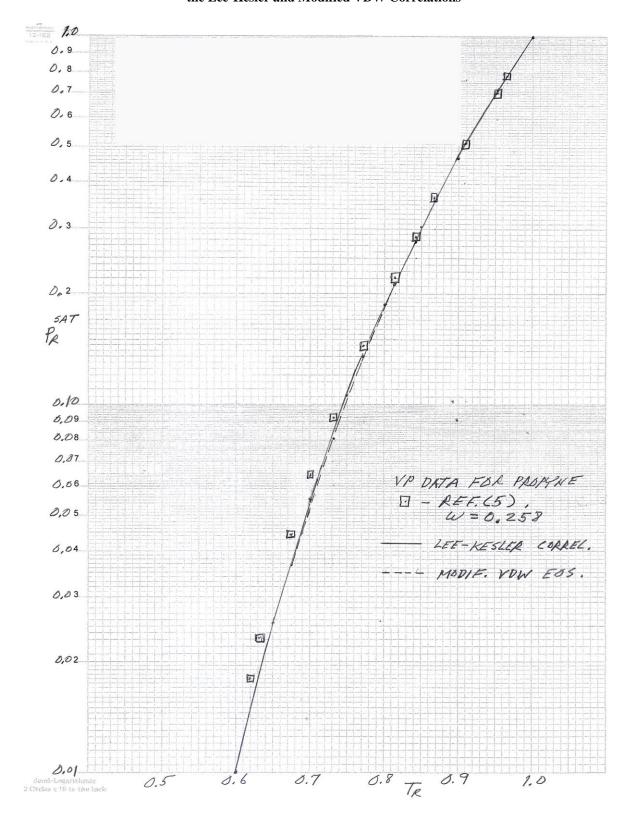



Figure 5 - Analysis and Comparison of Vapor Pressure Data of Propyne Based on the Lee-Kesler and Modified VDW Correlations

V. References

- 1. Koppany, C.R., "Correlation of Pure Component Vapor Pressures via Two Cubic Equations of State Written in Corresponding States Format" (2014). See the Website CRKTECH.COM
- 2. Lee, I.L. and Kesler, M.G., "A Generalized Thermodynamic Correlation Based on Three-Parameter Corresponding States", AIChE Journal, Vol. 21, No. 3, (May 1975).
- 3. Koppany C.R., "Improved Predictions of Liquid Specific Volumes and Thermodynamic Properties from Two Separate Modifications of the van der Waals Equation", Parts 1-4 (2010-2011). See the Website CRKTECH.COM
- 4. Soave, G., Chemical Engr. Science, Vol. 27, No. 6-A (1972) Page 1197.
- 5. Data Book of the American Petroleum Institute (API), Division of Refining.
- 6. Keenan, Keyes, Hill and Moore, "Steam Tables", John Wiley & Sons (1969).
- 7. Din, F., "Thermodynamic Properties of Gases", Vol. 1, NH₃, CO₂, CO, Butterworths, (1956).

Table 1 - Listing of BASIC Program VDWVP.BAS

```
2 OPEN "VDWVPOUT" FOR OUTPUT AS #1
5 READ A$, PC, TC, W, MW
6 PRINT #1, ""
10 PRINT #1, "COMPONENT IS ="; A$
15 PRINT #1, ""
17 PRINT #1, "T,F", "VP,PSIA", "VG", "VL"
19 PRINT #1, ""
20 \text{ TCR} = \text{TC} + 459.7
25 R = 10.731
30 READ T, PEST
35 \text{ TR} = \text{T} + 459.7
40 P = PEST
45 M = .551088 + 1.452291 * W
50 \text{ ALPHA} = (1 + M * (1 - SQR(TR / TCR)))^2
55 S1 = (27 / 64) * ALPHA * R * R * TCR * TCR / PC
60 S2 = (R / 8) * TCR / PC
65 A = (S1 * P) / (R * R * TR * TR)
70 B = (S2 * P) / (R * TR)
75 F = 1
80 GOSUB 760
85 VL = Z * R * TR / P
87 VLM = VL / MW
90 LNPHIL = LOG(1 / (Z - B)) + B / (Z - B) - 2 * A / Z
100 F = 2
105 GOSUB 760
110 VG = Z * R * TR / P
112 \text{ VGM} = \text{VG} / \text{MW}
115 LNPHIG = LOG(1 / (Z - B)) + B / (Z - B) - 2 * A / Z
125 DERIV = (VG - VL) / (R * TR)
130 FU = LNPHIG - LNPHIL
135 P1 = P - FU / DERIV
140 E1 = ABS(P - P1)
142 PRINT #1, P, P1
145 IF E1 < .001 THEN 160
150 P = P1
155 GOTO 65
160 PRINT #1, T, P1, VGM, VLM
165 PRINT #1, ""
170 GOTO 30
760 REM SUBROUTINE FOR SOLVING THE VDW EOS FOR Z
765 \text{ IF F} = 1 \text{ THEN } 780
770 z = 1
775 GOTO 785
780 Z = .001
785 \text{ Q10} = \text{Z} ^ 3 - (\text{B} + \text{1}) ^ Z ^ Z + \text{A} ^ Z - \text{A} ^ B
790 Q20 = 3 * Z * Z - 2 * (B + 1) * Z + A
795 Z1 = Z - Q10 / Q20
800 E20 = ABS(Z - Z1)
805 IF E20 < .00001 THEN 820
810 z = z1
815 GOTO 785
820 RETURN
1000 DATA ETHYLBENZENE, 532.5, 651.24, 0.3169, 106.17
1010 DATA 280,12,300,15,330,25,350,35,370,45,400,65
1020 DATA 430,90,450,110,500,170,530,220,550,255
1030 DATA 570,300,600,375,620,425,630,455
2000 CLOSE #1
9999 END
```

Table 2 - Output for BASIC Program VDWVP.BAS

COMPONENT IS =ETHYLBENZENE

T,F	VP,PSIA	VG	VL
12	14.02892		
14.02892	14.21677		
14.21677	14.21812		
14.21812			
14.21812	14.21811		
280	14.21811	5.091666	3.169876E-02
15	18.65255		
18.65255	19.15378		
19.15378	19.16102		
19.16102	19.16099		
 300	19,16099	3,847982	3.207984E-02
	19.10099	3.04/902	3.207964E-02
25	28.69662		
28.69662	29.00396		
29.00396	29.00579		
29.00579	29.00579		
330	29.00579	2.602288	3.27127E-02
35	37.40328		
37.40328	37.49588		
37.49588	37.49603		
	37.47003		
350	37.49603	2.039043	3.318191E-02
45	47.69941		
47.69941	47.79193		
47.79193	47.792		
370	47.792	1.616548	3.369527E-02
65	67.11529		
67.11529	67.15569		
67.15569	67.15573		
400	67.15573	1.162998	3.456307E-02
90	91.75941		
91.75941	91.78062		
91.78062			
	71.76002		
430	91.78062	0.8551963	3.558541E-02
110	111.6895		
111.6895	111.7061		
111.7061	111.7061		
450	111.7061	0.7021984	3.636641E-02
170	175.4531		
175.4531			
175.5821			
	173.5022		
500	175.5822	0.4389919	3.882092E-02

Table 2 - Output for BASIC Program VDWVP.BAS (Cont.)

COMPONENT IS =ETHYLBENZENE

220	224.8968		
224.8968	224.9878		
224.9878	224.9878		
530	224.9878	0.3343796	4.080124E-02
255	262.9448		
262.9448	263.1723		
263.1723	263.1723		
550	263.1723	0.2790941	4.245003E-02
300	305.7143		
305.7143	305.8321		
305.8321	305.8322		
	305.8322		
570	305.8322	0.2325889	4.449189E-02
370	303.0322	0.2323007	7.77/10/L-02
375	379.0131		
379.0131	379.0746		
379.0746	379.0746		
600	379.0746	0.1747412	4.876452E-02
425	434.0778		
434.0778	434.4931		
434.4931	434.4941		
434.4941	434.4941		
620	434.4941	0.1415037	5.31996 E-02
455	463.836		
463.836	464.3029		
464.3029	464.3044		
464.3044	464.3044		
	101.5011		
630	464.3044	0.1255429	5.644658E-02